STATS 2MB3, Tutorial 4

Feb 6 ${ }^{\text {th }}, 2015$

Distribution of linear combination

- $E(a X+b Y+c Z)=a E(X)+b E(Y)+c E(Z)$ regardless of whether X, Y and Z are independent or not.
- $\operatorname{Var}(\mathrm{aX}+\mathrm{bY})=\mathrm{a}^{2} \operatorname{Var}(\mathrm{X})+\mathrm{b}^{2} \operatorname{Var}(\mathrm{Y})+\mathrm{c}^{2} \operatorname{Var}(\mathrm{Z})$ only if X, Y and Z are independent.
- $\operatorname{Var}(a X+b Y+c Z)=a^{2} \operatorname{Var}(X)+b^{2} \operatorname{Var}(Y)+c^{2} \operatorname{Var}(Z)$ $+\operatorname{abCov}(X, Y)+b c \operatorname{Cov}(Y, Z)+a c \operatorname{Cov}(X, Z)$ is the general form.
- $\operatorname{Var}(X+Y)=\operatorname{Var}(X-Y)$ if X and Y are independent.
- The linear combination of normal variables is still a normal variable.

Ex 49, Page 229

- There are 40 students in the class. The time for grading a randomly chosen exam paper is a random variable with expected value 6 min and standard deviation 6 min.
- a) If the grading times are independent and the grader begins at 6:50pm, then what is the probability it ends before 11:00pm?
- b) What is the probability that the grader finishes the work after 11:10pm?
a)

Since there are 40 students, then we set the grading times as $\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{40}$.

The total grading time is $T=X_{1}+X_{2}+\ldots+X_{40}$.
The expected value and standard deviation of T are $\mu_{\mathrm{T}}=n \mu=40^{*} 6=240, \sigma_{\mathrm{T}}=\mathrm{n}^{1 / 2} \sigma=40^{1 / 2} * 6=37.95$.

There are 250 minutes between 11 pm and 6:50pm.
Hence, $\mathrm{P}(\mathrm{T} \leq 250)$

$$
\begin{aligned}
& \approx P\left((T-n \mu) / n^{1 / 2} \sigma \leq(250-240) / 37.95\right) \\
& =P(Z \leq 0.26)=0.6026 .
\end{aligned}
$$

b)

Since 11:10pm-6:50pm=260min, then

$$
\begin{gathered}
P(T>260) \approx P\left((T-n \mu) / n^{1 / 2} \sigma>(260-240) / 37.95\right) \\
=P(Z>0.53)=0.2981 .
\end{gathered}
$$

Ex 65, page 234

- When pH of a certain chemical compound is measured by randomly selected student is 5.00 with standard deviation 0.2 . Let \bar{X} be the average pH measured by students in morning lab and \bar{Y} be the average pH measured by students in afternoon lab.
- a) If pH is a normal distributed variable and there are 25 students in each lab, compute $P(-0.1 \leq \bar{X}-\bar{Y} \leq 0.1)$.
b) If there are 36 students in each lab, but pH is not normal distributed, calculate
$P(-0.1 \leq \bar{X}-\bar{Y} \leq 0.1)$
- a) $E(\bar{X}-\bar{Y})=5-5=0$,

$$
\begin{aligned}
& \operatorname{Var}(\bar{X}-\bar{Y})=\frac{\sigma^{2}}{25}+\frac{\sigma^{2}}{25}=\frac{2}{25} \cdot 0.2^{2}=0.0032 \\
& \operatorname{sd}(\bar{X}-\bar{Y})=\sqrt{0.0032}=0.0566
\end{aligned}
$$

Since $\frac{(\bar{X}-\bar{Y}-\mathrm{E}(\bar{X}-\bar{Y}))}{\operatorname{sd}(\bar{X}-\bar{Y})} \sim N(0,1)$
then
$\mathrm{P}(-0.1 \leq \bar{X}-\bar{Y} \leq 0.1)=\mathrm{P}\left(\frac{-0.1-0}{0.0566} \leq \mathrm{Z} \leq \frac{0.1-0}{0.0566}\right)=\mathrm{P}(-1.77 \leq \mathrm{Z} \leq 1.77)$ the probability is 0.9232

- b)
- Since 36 is sufficiently large, then we can use Central limit theorem.

$$
\begin{aligned}
& \operatorname{Var}(\bar{X}-\bar{Y})=\frac{\sigma^{2}}{36}+\frac{\sigma^{2}}{36}=0.0022 \\
& \operatorname{sd}(\bar{X}-\bar{Y})=\sqrt{\operatorname{Var}(\bar{X}-\bar{Y})}=0.0471 \\
& \mathrm{P}(-0.1 \leq \bar{X}-\bar{Y} \leq 0.1) \approx \mathrm{P}\left(\frac{-0.1-0}{0.0471} \leq \mathrm{Z} \leq \frac{0.1-0}{0.0471}\right)=\mathrm{P}(-2.12 \leq \mathrm{Z} \leq 2.12)
\end{aligned}
$$

The probability is 0.9660 .

Ex 86, page 237

- A student has a class that is supposed to end at 9:02am with standard deviation 1.5 min (normal distribution) and the starting time of next class is 9:10am with standard deviation 1 min (normal distribution). Suppose the time from one classroom to another is normally distributed with mean 6 min and standard deviation 1 min . What is the probability that the student gets the second classroom before the lecture starts?
- There are 8 minutes between 9:02am and 9:10am. Then we can set three random variables to represent the ending time of first class $\left(\mathrm{X}_{1}\right)$, the starting time of second class $\left(\mathrm{X}_{2}\right)$ and time consumed on the way $\left(\mathrm{X}_{3}\right)$. And $X_{1} \sim N\left(0,1.5^{2}\right)$
$X_{2} \sim N(8,1)$
$X_{3} \sim N(6,1)$

We need to calculate the probability

$$
\mathrm{P}\left(\mathrm{X}_{1}+\mathrm{X}_{3}<\mathrm{X}_{2}\right)=\mathrm{P}\left(\mathrm{X}_{1}+\mathrm{X}_{3}-\mathrm{X}_{2}<0\right)
$$

- Since

$$
X_{1}+X_{3}-X_{2} \sim N(-2,4.25)
$$

then

$$
P\left(X_{1}+X_{3}-X_{2}<0\right)=P(Z<2.06)=0.9803
$$

